Object Detection based on Deformable Parts Model with Global Context

نویسندگان

  • Yuanyuan Wang
  • Xinyu Cui
  • Mianshu Chen
  • Aijun Sang
  • Xiaoni Li
چکیده

The Deformable part-based model (DPM) is a remarkable algorithm in object detection. In this paper, it is combined with the global information to improve its performance. The gist feature of an image is extracted to capture its global information. After that, the principal component analysis (PCA) is used to reduce the dimensionality of the gist feature. The k nearest neighbor distance (k-NND) is utilized to judge the similarity of an image and an object. To accelerateour algorithm, every object is represented as several object models, which can be obtained by affinity propagation (AP). Finally, the score of DPM is merged with one of k-NND to rescore an image. Experimental results show that the introduction of global context is positive for the object detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformable Shape Detection and Description via Model-Based Region

A method for deformable shape detection and recognition is described. Deformable shape templates are used to partition the image into a globally consistent interpretation, determined in part by the minimum description length principle. Statistical shape models enforce the prior probabilities on global, parametric deformations for each object class. Once trained, the system autonomously segments...

متن کامل

Deformable Part-based Fully Convolutional Network for Object Detection

Existing region-based object detectors are limited to regions with fixed box geometry to represent objects, even if those are highly non-rectangular. In this paper we introduce DP-FCN, a deep model for object detection which explicitly adapts to shapes of objects with deformable parts. Without additional annotations, it learns to focus on discriminative elements and to align them, and simultane...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Deep Deformable Part Models

The deformable parts model (DPM) [6] serves as a key component in most modern state-of-the-art object detection systems. At a high level, the DPM composes a single object model by learning to detect and assemble parts of an object. Most modern systems employing the DPM employ densely computed Histogram of Oriented Gradients [5] features at training time. Despite the success of HOG features in m...

متن کامل

3D Object Detection with a Deformable 3D Cuboid Model

This paper addresses the problem of category-level 3D object detection. Given a monocular image, our aim is to localize the objects in 3D by enclosing them with tight oriented 3D bounding boxes. We propose a novel approach that extends the deformable part-based model [1] to reason in 3D. Our model represents an object class as a deformable 3D cuboid composed of faces and parts, which are both a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015